
Iterative Residual Policy
for Goal-Conditioned Dynamic Manipulation of Deformable Objects

Cheng Chi1, Benjamin Burchfiel2, Eric Cousineau2, Siyuan Feng2, Shuran Song1
1 Columbia University 2 Toyota Research Institute

https://irp.cs.columbia.edu

Abstract—This paper tackles the task of goal-conditioned
dynamic manipulation of deformable objects. This task is highly
challenging due to its complex dynamics (introduced by object
deformation and high-speed action) and strict task requirements
(defined by a precise goal specification). To address these chal-
lenges, we present Iterative Residual Policy (IRP), a general
learning framework applicable to repeatable tasks with complex
dynamics. IRP learns an implicit policy via delta dynamics –
instead of modeling the entire dynamical system and inferring
actions from that model, IRP learns delta dynamics that predict
the effects of delta action on the previously-observed trajectory.
When combined with adaptive action sampling, the system can
quickly optimize its actions online to reach a specified goal. We
demonstrate the effectiveness of IRP on two tasks: whipping
a rope to hit a target point and swinging a cloth to reach
a target pose. Despite being trained only in simulation on
a fixed robot setup, IRP is able to efficiently generalize to
noisy real-world dynamics, new objects with unseen physical
properties, and even different robot hardware embodiments,
demonstrating its excellent generalization capability relative to
alternative approaches.

I. INTRODUCTION

We study the task of goal-conditioned dynamic manipulation
of deformable objects, examples of which include whipping a
target point with the tip of a rope or spreading a cloth into a
target pose (Fig. 1). Humans show remarkable ability to not
only perform these tasks with high precision (e.g., aiming a
lasso or setting a table cloth), but also to quickly transfer these
manipulation skills to new objects with very few attempts. For
robots, however, this has historically been a highly challenging
problem due to several factors:

• Complex dynamics: Unlike quasi-static manipulation, dy-
namic manipulations (often with high-speed actions) often
lead to complex and non-linear effects. These dynamical pro-
cesses are difficult to model, and pose significant challenges
for system identification and state estimation. As a result,
it is often infeasible to apply classical algorithms, such as
optimal control, when an accurate and performant forward
model of the system is prohibitively difficult to obtain.

• Complex object properties: Unlike rigid objects, de-
formable objects exhibit dynamics that are influenced by nu-
merous hard-to-estimate factors such as nonlinear anisotropic
stiffness, friction, density distribution, and changing aerody-
namics. Not only is it challenging to estimate these properties,
it is hard to map them to the parameter used in common
simulators using simplified physics models.

Target

Iteration 1 Iteration 2 Iteration 3

Target

Goal-conditioned Dynamic Rope Manipulation

Goal-conditioned Dynamic Cloth Manipulation

y

z

Fig. 1: Goal-conditioned dynamic manipulation of deformable
objects. Our method achieves high accuracy by iteratively adjusting
actions using visual feedback and a learned delta dynamics network.
Top: Rope manipulation task. Goal configuration is defined by a
target tip position (green cross). Bottom: Cloth manipulation task.
Goal configuration is defined by target keypoint locations (green dots).

• Precise goal conditions: Due to these challenges, prior work
that applies dynamic manipulation to deformable objects
generally studies tasks with low precision requirements such
as cloth unfolding [6] or cable vaulting [31]. In contrast, the
tasks studied in this paper require precise actions in order
to reach the specified goal conditions — for example hitting
a goal location with the tip of a whip or reaching a goal
configurations defined by keypoints on a cloth.

To address these challenges, we present Iterative Residual
Policy (IRP), a general formulation for goal-conditioned
dynamic manipulation, that learns how to iteratively improve its
actions to achieve a given goal condition using visual feedback.
This formulation highlights two key features:

• Iterative action refinement: Instead of directly inferring the
optimal action from the goal, IRP starts with a best guess
action and iteratively refines it to move toward the goal. For
tasks with repeatable dynamics, this iterative approach allows
the system to achieve high precision and be robust against
errors from action, observation, and model prediction.

• Delta dynamics: Within each iteration, IRP learns to

https://irp.cs.columbia.edu

~10 cm error
Sim2real gap

Different rope t
parameters

Simulated
base-rope-100
(~12 cm error) base-rope-100 long-cloth bullwhip knotted

Fig. 2: Challenges. Here we show the different rope trajectories under the same robot action. Due to different physical properties (e.g.,
aerodynamic, mass distribution or stiffness), the resulting trajectories varies drastically. Left plot shows the trajectory overlay between the
real-world (solid curve) and simulated result (dashed curve) both for base-rope-100. The offset between them indicates the sim2real gap even
with the accurate rope parameters. These examples highlight the importance of online adaptation that is necessary for both sim2real transfer
and generalization to novel ropes with unknown parameters.

predict an updated trajectory from an observed trajectory
with small action perturbations. Compared to modeling the
entire dynamical system (action in, trajectory out), this “delta
dynamics” (especially its general direction) is much easier
to predict and generalize to new objects, thereby, enabling
quick online adaption.
Our primary contribution is the Iterative Residual Pol-

icy (IRP), a general learning framework for goal-conditioned
dynamic manipulation. Despite only trained using simulation
data, IRP can be directly applied to real-world hardware.
Furthermore, IRP demonstrates impressive generalization ca-
pability to unseen object instances, out-of-distribution rope
parameters, unmodeled physical effects, and varying robot
embodiments. Our experiments show that IRP can achieve pixel
level accuracy for a wide variety of goals in both simulation
and real robot environments (1.8cm and 2.6cm respectively).

II. RELATED WORK

In this section, we will focus on summarizing relevant prior
methods for deformable object manipulation.

Goal-conditioned manipulation is particularly difficult for
deformable objects due to their high degree-of-freedom and
under-actuation [19, 20, 23, 24, 8, 22]. Previous work studied
tasks such as rope knot-tying [24] and fabric folding [8]. Early
methods attempt to transfer demonstration trajectories to unseen
configurations [22]. Recently, deep learning has been used
extensively [23, 24, 8] to enable policy generalization to unseen
objects or multiple tasks. However, these methods only consider
quasi-static actions, where action effects are inferred mostly
from object geometry alone. While quasi-static manipulations
has shown to be sufficient to solve many tasks, the resulting
systems are often slow and inefficient.

Dynamic manipulation takes advantage of momentum (in
addition to kinematic, static and quasi-static mechanisms)
to increase load capacity or enable motions to have manip-
ulands extend outside of the robot’s nominal reach range
[16, 30, 4, 5, 21, 28, 11]. Deformable objects pose a unique
generalization challenge for dynamic manipulation policies due
to complex physical properties and a particularly large sim2real
gap. Using reinforcement learning, Jangir et al. [9] proposes

a system to dynamically fold and place cloth in various goal
configurations. However, thousands of interactions are required
for training. Similarly, Lim et al.[13] closes the sim2real gap by
algorithmically tuning physics simulation parameters with real-
world observations. But this process needs to be repeated for
every unseen object instance. Leveraging visual feedback and
domain randomization, Hietala et al [7] is able to successfully
transfer a manipulation policy trained in simulation to a real
robotic setup. However, the policy is limited to a narrow range
of goals such as folding clothes exactly in half. In comparison,
our method is able to generalize to both unseen real-world
object instances as well as wide variety of goals, making it a
step closer to real-world applications.

Trajectory optimization uses analytical models [28] or
numerical simulation [12, 18, 29, 10, 25] to generate mostly
open-loop solutions for deformable object manipulation. Once
a model has been designed, or automatically identified[25],
the optimization problem can be solved using methods such
as direct collocation [10], single shooting [12] or black-box
optimization [18]. These methods are generally capable of
handling a wide range of goals and generalizing to many
object instances, as long as a model is available for each
new object. However, direct execution of optimal trajectory
solutions on hardware (i.e., the OptSim method described later)
does not work well for our tasks due to the large sim2real gap.
In contrast, our method bridges this gap using feedback from
previous trajectories without an explicit dynamics model.

Iterative Learning Control (ILC) leverages feedback from
previous iterations to improve the accuracy of a repeatable
system [17, 1]. Most ILC algorithms tackle the task of trajectory
tracking control, compensating for repeated disturbances against
a reference trajectory. However, when the objective function
is non-convex and difficult to optimize (like the two tasks we
investigate in this paper), the reference trajectory is hard to
obtain. Hence, ILC can not be directly applied. In addition,
existing ILC algorithms often assumes known control direction
or Jacobian which is difficult to obtain for our task. In contrast,
our method is able to iteratively solve these tasks despite its
complexity.

III. PROBLEM SETUP

We use two domains as examples of general dynamic
manipulation tasks, one featuring 1-D deformable objects
(ropes) and the other focusing on 2-D deformable objects (table
cloths). For both tasks, the physical parameters of the objects
are not known to the algorithm a priori. During testing, a single
policy is used for each task and evaluated across a diverse
set of manipulands and robot embodiments, demonstrating our
method’s strong generalization capability to objects significantly
outside of its training distribution.

Rope whipping. The task is to hit a target location in the
air with the tip of a rope attached to a UR5 robot (Fig 1 first
row). The range of target locations far exceed the robot’s reach
range, requiring the robot to swing the rope dynamically. To
reach sufficient speed in practice, we extended the UR5’s end-
effector with a 50cm long wooden stick. We use a parametric
action primitive to describe the robot’s movement. The action
space for the whipping primitive is a = (v, J2, J3), where
J2 ∈ [90,−30]◦ and J3 ∈ [−110,−290]◦ are the target angles
for joints two and three, respectively, and v ∈ [1.0, 3.14] rad/s
is the maximum permissible angular velocity across all joints.

This action primitive considers only 2D movement in the
Y-Z plane, where target locations are defined in-plane — it
is sufficient for this task, since out-of-plane goals could be
reached simply by rotating the robot’s base joint. The trajectory
of the rope tip Ti is tracked and rasterized to a 2562 image as
observation input. The distance metric D(Ti, g) for this task
is defined as the minimum distance from any point on the
trajectory Ti to the goal location g.

Cloth placement. The task is to place a square cloth on
the table that reaches the goal configuration specified by 9
keypoints on the cloth (shown in Fig. 1 bottom row). Again, the
goal configurations are further than the arm’s maximum reach
range, requiring dynamic actions. We assume that the cloth is
gripped by two grippers that move in sync and consider the
case where the grippers only move within the Y-Z plane, since
out-of-plane goals can be reached by horizontally translating
the trajectory. Gripper trajectory is parameterized as a cubic
spline with 3 via-points, evenly spaced temporally, in the Y-Z
plane, Fig. 4. The start point and the Z coordinate for the end
point are fixed. The remaining 3 degrees of freedom — Y,Z
locations for the second via-point and the Y locations of the
third via-point— as well as the total duration of the action,
constitute the 4 dimensional action space. The trajectory for
all 9 keypoints on the cloth Ti is used as input observation
to the algorithm. The distance metric D(Ti, g) for this task is
defined as the mean keypoint distance between the cloth’s final
configuration and target configuration.

IV. APPROACH

When attempting to hit a target with an unfamiliar rope,
humans will generally not succeed on their first try. However,
using physical intuition, people can usually predict the effect
of adjusting their actions; when swinging a rope, for example,
larger force will make the rope tip swing higher. Although the
prediction is not perfect, people often adjust their actions in

Execute
Action

ai+1=ai+ δai
*

Best
Delta

Action
δai

*

Predicted
Trajectories

…

Residual Policy

Residual
Policy

robot

Trajectory

Action Samples

Goal

Iterate

…

02

28

25

0.018, 0.229, 0.044

-0.104, 0.022, -0.206

-0.089, 0.090, -0.031

Action range [0,1]

Observed
Trajectory

Sampled
Delta Actions

Iterate

Delta
Dynamics
Network

1
0

O
cc

up
an

cy
Pr

ob
ab

ili
ty

Goal

Ti
Ti

δai

y

z

Fig. 3: Iterative Residual Policy. During each action execution,
the tip trajectory is recorded as an image. For each sampled delta
action δa, the Delta Dynamics Network predicts trajectories resulting
from applying each delta action. The delta action that is predicted to
minimize distance to the target is selected for execution during the
next iteration.

Algorithm 1 Iterative Residual Policy

1: Input: Goal position g
2: Initialize action a0 ∈ RNa . §IV-B Initial action
3: while i < max step do
4: Ti = robot execution(ai)
5: di = D(Ti, g) . §III Defined for each task
6: if di < dstop then
7: break;
8: end if
9: δa0:Ns

i = sample action(di) . §IV-B Delta action
10: T̂ 0:Ns

i = delta dynamics(δa0:Ns
i , Ti) . §IV-A

11: j∗ = argminj(D(T̂ j
i ,g))

12: ai+1 = ai + δaj
∗

i

13: end while

the right direction and quickly drive down their error after a
few interactions.

Building on this intuition, we propose Iterative Resid-
ual Policy for goal-conditioned dynamic manipulation of
deformable objects. Given an observation of trajectory Ti by
action ai, we sample a set of potential delta actions δai and
predict the resulting trajectory T̂i for each delta action. We
then evaluate each of the predicted trajectories based on their
minimal distance to the goal di, and greedily select the optimal
delta action δaj∗i to execute in the next iteration. Trained using
simulation data alone, this method is able to achieve high
accuracy and generalize to out-of-distribution objects on our
real-world robot setup. The following sections provide details
for the key algorithm components and design decisions.

Iteration 0 Iteration 1 Iteration 5
Gripper Reachable Workspace

Closest
Goal

Furthest
Goal

A. Goal Range C. Evaluation ResultB. Typical Strategy Learned by IRP

G
oa

l 1
G

oa
l 2

y

z
A

B

C

y

z

Fig. 4: Cloth placing task A) Some goals are placed outside the arm’s reach range, therefore requiring dynamic actions. B) Top row: our
algorithm adjusts the trajectory to reach a far-away goal. Bottom row: our algorithm reduces action velocity to eliminate undesired folding.
C) Mean distance to goal keypoints averages across all test cloth and goals, shown with a 95% confidence interval. Our method yields
significantly better performance compared to the [deltaReg] baseline. Note that due to the stretching of the cloth and thickness of collision
capsules, it is not possible to achieve 0 error.

A. Delta Dynamics Network

The delta dynamics network takes in an observed trajectory
Ti and a delta action δaji as input and predicts the trajectory
T̂ j
i after the delta action is applied. This network is used at

every iteration for action optimization.
Trajectory representation. To spatially represent the tra-

jectory Ti, we rasterize the it into a 256×256 image projected
onto the Y-Z plane. Ti covers ±3m area from the robot base
joint. The pixel values correspond to occupancy probability;
the observed trajectories have a binary pixel and the predicted
trajectories are real-valued: p ∈ [0, 1]. For the cloth placing
task, the trajectory image of all 9 keypoints are stacked channel-
wise. Due to small differences in initial condition, hardware
precision, ambient airflow as well as other disturbances, the
trajectory is not always the same for each action. Moreover,
different segments of the trajectory exhibit different sensitivity
to noise.

Action representation. We broadcast the Na dimensional
delta action δai into a Na channel image and then concatenate
them with the trajectory images before feeding them into the
network. This spatially aligned representation allows us to use
a standard CNN architecture designed for image segmentation
while ensuring the action information is available in the
receptive field of every neuron.

Network and loss. We use DeepLabV3+ [2] for our network
architecture. During training, we uniformly select actions as
ai and sample δai with a Gaussian distribution (SD=0.125).
The resulting trajectories in simulation are used as supervision.
The network is trained with Binary Cross Entropy Loss and
the AdamW optimizer [15] with learning rate of 0.001 and
weight decay of 1× 10−6.

B. Interactive Action Sampling and Selection

Initial action. In the rope whipping task, the initial action
a0 is selected using the best average action for all training rope
given a specific goal. This action can be computed efficiently
with our offline training dataset. The same action is used for a
goal regardless of the rope parameters. In the cloth placement

task, a constant initial action is used for all goals to ensure all
keypoint trajectories are observable in the first iteration.

Delta action. Since each dimension of the action space
has been scaled to between 0 and 1, we sample Ns = 128
delta actions δai for each iteration from a spherical Gaussian
distribution with 0 mean and standard deviation σ. To reduce
overshooting and accelerate convergence, we select σ = 0.5×
di, where di = D(Ti, g).

Action selection. After the network predicts the raw trajecto-
ries image for all delta action sample δa0:Ni , we threshold the
prediction with t = 0.2, creating a set of binary trajectory
image T̂ 0:N

i . Then, the delta action δaj∗i associated with
smallest distance D(T̂ j

i , g) is selected to compute next action:
ai+1 = ai + δaji . In real-world experiments, the optimization
stops when the policy reaches d stop = 2cm error or maxi-
mum iteration max step = 10 is reached. In simulation, the
optimization executes for exactly 16 iterations. The algorithm
is summarized as pseudocode in Algorithm 1.

C. Training Data Generation

Rope whipping. For training and validation, we built a
simulation environment in MuJoCo [26]. The rope is simulated
using 25 linked capsules and to generate different ropes,
varying two parameters: length and density. The range of both
parameters as well as the training/testing split is shown in
Fig. 6 left. The rope parameters are sampled from a 122 grid.
For each rope, we simulate 503 actions within the set box
constraint for speed [1, 3.14] rad/s, joint 2 ∈ [90,−30]◦ and
joint 3 ∈ [−110,−290]◦. In addition, each action was repeated
3 times with different random perturbations on the initial state
to capture the stochastic nature of the trajectory. The entire
dataset contains 54 million trajectories.

Clearly this model does not capture all the variations in
real-world ropes, and the simulation itself presents different
dynamics from the real world due to unmodeled factors such
as aerodynamics, collision with the floor, etc. Despite the
significant sim-to-real gap, we will later show that our model
trained on these simulated ropes generalizes very well in the
real world with significantly out-of-distribution ropes.

base-rope-100

thick-rope

knotted
elink
-60

elink
-50

elink
-40

B. Robot Variations

long-clothbullwhip

base-rope-60

A. Rope Variations

base-rope-120

C. Properties and Parameters

Fig. 5: Real-world test cases. A) Real-world testing ropes used to test our algorithm’s generalization to untrained material, length, mass
distribution and aerodynamics. B) By changing the the length of last link, the mapping from action parameters to effective swing speed and
end-effector trajectory are changed simultaneously. C) Table for key properties and parameters for each real world test case.

Cloth placement. Similarly, the training data for cloth is
collected from a MuJoCo simulation environment. The square
cloth is simulated as a 132 grid of capsules, skinned as a cloth
for visualization. We again vary 2 parameters: size (ranged
between 0.4 to 0.6 m) and density (ranged between 0.2 to 1.4
kg/m2). For each cloth parameter, we sample speed and 3
via-point parameters from a 8× 163 grid. In total, the dataset
contains 131 thousand examples.

D. Real world system setup.

We conducted real-world experiments for the rope whipping
task with an UR5-CB3 robot augmented with a wooden
extension. We used a single RGB camera (Stereolab ZED
2i) running at 720p 60fps for tracking the tip of the rope. Due
to the limited resolution and large motion range, stereo tracking
does not provide sufficient depth accuracy and reliability. We
therefore assume that the rope tip only moves in a 2D plane,
allowing us to reduce the perception problem to that of 2D
tracking. We placed the camera 2.4m away from the robot, and
calibrated the homography between the image plane and the
robot Y-Z plane with manually labeled point correspondences.
We trained a keypoint detection model based on DeepLabV3+
with 400 hand labeled images. Note that we use a higher image
resolution (720p instead of 256p) for tracking results with less
than 1.3cm tracking error in the validation set.

V. EVALUATION

In our experiments we seek to validate the system’s gener-
alization capability to 1) novel object physical parameters 2)
real-world dynamics, and 3) robot hardware embodiment. In all
following experiments, both in simulation and the real-world,
we use the same model trained with simulation training ropes
generated in Sec. IV-C. The cloth placing task is evaluated in
simulation only and is discussed in Sec. VI

A. Rope Whipping Task

Metrics. We measure the performance of these algorithms
using the minimum distance to the goal (in cm) at each step.
The faster that an algorithm reaches a certain distance the better.
We allow the maximum iteration to be 16 in simulation and 10

in real-world experiments. Note that the pixel size is around
2.3cm in our trajectory image encoding and the real-world
tracking accuracy is around 1.3cm.

Test Cases. To test the system’s ability to generalize to
different rope parameters, we used the following testing ropes:

• Simulated ropes with parameters in the interpolation regime
relative to the training rope parameters (Fig. 6 green).

• Simulated ropes with parameters in the extrapolation regime
relative to the training rope parameters (Fig. 6 blue).

• Real-world ropes with different material, length, and mass
distribution (Fig. 5 C). We modeled the simulation rope after
the [base-rope], therefore all other ropes are significantly
out-of-distribution. In particular, the [bullwhip], and [knotted-
rope] have a non-uniform mass distribution and the [long-
cloth] has a larger surface area to density ratio, hence,
experiences much larger aerodynamic effects (unmodeled in
simulation) than to other ropes.

Robot hardware embodiment. We validate the system’s
generalization capability to different robot hardware embod-
iments by sampling the robot’s last link length from 3
different lengths, [elink-x] where x = 40cm,50cm,60cm. By
changing robot’s last link, we are effectively changing the
mapping between the robot’s action parameter and its physical
embodiment, which require the system to adapt according to
the new trajectory observations. Fig. 7 shows the example
results for this experiment, where IRP converges to 3 different
actions for the same goal.

Algorithm comparisons. To validate the major design
decisions and their impacts on performance, we compare with
following alternative approaches:

• System identification (SysID, SysID GT): This method
first identifies key system parameters and then infers the
action using these parameters. We give this baseline a head
start by providing the true varying parameters in simulation:
length and density. To ensure fairness, we use 16 fixed system
identification actions to collect observations. Another 4-layer
MLP is trained to regress the optimal action from estimated
rope parameters. [SysID GT] is a variant of this baseline,
where we assume the ground truth rope parameters are given.

13 29 51 79 114 155
Density (g/m)

50

70

90

110

130

150

Le
ng

th
 (c

m
)

Dataset Split

Train Interpolation Extrapolation

0 2 4 6 8 10 12 14
Iterations

0.3
0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0

D
is

ta
nc

e
(c

m
)

Interpolation

0 2 4 6 8 10 12 14
Iterations

0.3
0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0

D
is

ta
nc

e
(c

m
)

Extrapolation

IRP(Ours) SysID SysID_GT IterHeuristic DeltaReg ConstSigma IterLinear

Fig. 6: Rope Experiments in Simulation. Left: 12 × 12 grid of rope parameters used in simulation experiment (grey: training, orange:
interpolation, blue: extrapolation). Middle and Right: Distance to goal in cm averaged across 5 ropes and 25 goals for each method, shown
with 95% confidence interval. The result of single-step methods (SySID, SySID GT) are shown as lines for visualization. Testing rope with
parameters that extrapolate beyond training ropes parameters (middle) typically result in higher distance errors for most of the alternative
approaches. However, IRPis able to achieve low distance errors for both scenarios (0.4cm and 1.5cm respectively).

0

10

20

30

D
is

ta
nc

e
(c

m
)

elink-40

Terimnated

0

10

20

30

D
is

ta
nc

e
(c

m
)

base-rope-100

0 1 3 6 9
Iterations

0

10

20

30

D
is

ta
nc

e
(c

m
)

elink-60

Iteration 0 Iteration 1 Iteration 3

Fig. 7: Adaptation to robot embodiment. We varies the robot’s last
link with 3 different lengths (40,50,60cm), which effectively changes
the mapping between the actions and their effects. As expected, the
robot with a different link than training (elink-40/-60) has a higher
initial error. However, for all variations, the system is able to reach
the goal by adjusting its action according to the visual feedback.

• Iterative control with heuristic (iterHeuristic): A heuristic
strategy that increases both the speed and amplitude of
the action if the trajectory intersects with the line segment
between the goal and the origin (the goal is outside the
trajectory) and decreases otherwise. If the trajectory does
not intersect with the ray from the origin to the goal, the
algorithm terminates to prevent increasing error.

• Iterative control with linear model [iterLinear]: Instead of
leveraging the residual dynamics model learned from offline
data, a linear model of the plant is fitted on the trajectories
observed so far, updated at each step. The action is adjusted
at each step by minimizing the shortest distance to the goal
using the linear model.

• Direct delta action regression [DeltaReg]. Instead of using
sampled delta actions as input, this method directly regresses
the optimal delta action for the goal and the observed
trajectory. The model is trained with MSE loss. We test

OptSim AVG il-3 il-9 IRP-3 IRP-9
rope

base-rope-100 21.6 15.6 31.5 13.4 3.2 1.3
base-rope-120 14.4 16.5 51.9 22.5 1.9 1.9
base-rope-60 14.5 19.9 28.4 28.0 8.9 5.5
knotted 14.2 8.3 17.1 9.2 2.6 2.6
thick-rope 11.9 19.7 29.2 10.7 11.7 3.2
long-cloth 15.8 59.6 72.2 16.8 14.0 1.9
bullwhip 17.0 28.7 50.5 8.4 9.0 1.9

elink-40 16.0 28.4 77.5 29.3 13.3 6.1
elink-60 11.9 14.6 30.5 18.5 5.4 3.8

TABLE I: Realworld Evaluation. Distance to goal in cm for
7 unseen real world ropes and 2 robot hardware embodiments.
[long-cloth] and [bullwhip] are particularly out-of-distribution. Our
method significantly outperforms the other approaches we evaluated,
demonstrating surprisingly strong generalization to unseen rope
parameters, action definitions and simulation/reality divergence. IL:
iterLinear. X-3, X-9 error measured in iteration 3 and 9.

it with the same number of iterations.
• No adaptive action sampling [ConstSigma]. An ablation

of our method which uses a fixed sigma for action sampling.
• Average action in simulation (AVG): The action that

minimizes the average distance to goal in the training set,
regardless of rope parameters, this is also the action we used
to initialize our method at step one.

• Optimal control in simulation (OptSim): This method
estimates optimal actions in simulation with measured rope
parameters from a real-world (i.e., length, density and width).
This method represents an oracle for model-based control
using our simulator. It is used only in real-world experiments
to quantify the sim2real gap.

B. Experimental Analysis

Benefits of learning residual dynamics.
We hypothesize that this formulation eases the learning

process and maintains the flexibility of representing complex
non-linear dynamics. To validate this hypothesis, we compared
to other alternatives for modeling the system.

Ite
rH

eu
ris

tic
Ite

rL
in

ea
r

Iteration 0

IR
P

(O
ur

s)

Iteration 5 Iteration 15

Fig. 8: Comparison. In this example, the rope trajectory switches
between several discrete modes. As a result, IterHeuristic gets stuck in
a sub-optimal orbit and iterLinear failed to approximate the switching
behavior. In contrast, our method accurately predicts the switching
behavior and reaches the goal.

Compared to the system identification method [SysID,
SySId GT], IRP can better handle unmodeled physical pa-
rameters presented in real-world ropes (e.g., aerodynamics or
stiffness), which is captured in the input trajectory but not in
the predefined system parameters (e.g., length and density).
As a result, the algorithm can adapt to real-world ropes much
better than SysID methods.

Compared to [DeltaReg], IRP better models the multi-modal
aspect of the solution space. Oftentimes there are multiple
actions could reach the same goal, where [DeltaReg] tends to
predict the mean of all valid solution (due to its MSE objective),
which is likely to be an invalid solution.

Compared to [IterHeuristic], our learned IRP model can
capture complexity in the rope dynamics, such as mode
switching when crossing key velocity thresholds, that the
heuristic approach cannot capture. The [IterHeuristic] policy
essentially assumes that the tip of the rope swings in a full
circle, with its radius controlled by the action’s energy. However,
when the energy is insufficient for the tip to swing past apex
this assumption is incorrect, and therefore, lead to incorrect
action prediction. Moreover, around the apex point, the rope
trajectory quickly switches between several modes, causing
[IterHeuristic] to get stuck in oscillating local minima (Fig. 8
first row).

Finally, compared to [iterLinear]: our IRP model is able to
converge in fewer steps with lower distance. In many cases,
the rope trajectories switch between several discrete modes for
different actions in a highly non-linear fashion, which cannot
be easily captured by the linear model (Fig. 8 second row). In
contrast, our model is able to learn a non-linear model from

Knotted RopeBase Rope

D
is

ta
nc

e
(c

m
)

Iteration

Fig. 9: Online adaptation to system changes. In this experiment,
the robot first interacts with [base-rope-100]. At step 6, the rope is
knotted. We plot the distance to goal with respect to the steps. While
the tied knots significantly change the rope’s length, density and mass
distribution, the system is able to quickly adjust to the new system
dynamics and achieve low errors.

the diverse set of training trajectories.
Benefits of iterative action refinements. With its iterative

refinements, IRP can consistently improve its performance
from the best average action. On average, the error drops 94%
on interpolation experiments and 91% drop on extrapolation
experiments by using the additional trajectory observations.
Moreover, the comparison with [ConstSigma] shows that the
adaptive action sampling method (described in Sec. IV-B) can
further improve the action samples and prevent overshooting
around the optimal action — demonstrated by higher error and
variance for [ConstSigma] in Fig. 6 C after step 4.

Comparison to optimal control in simulation. By comput-
ing the action using exhaustive search with manually measured
parameters, the performance of [OptSim] represents an oracle
for trajectory optimization using our MuJoCo simulation
environment, and it should achieve perfect result in the
simulated environments. However, due to the instability of the
dynamical system and unmodeled effects such as aerodynamics,
[OptSim] still results in higher error compared to IRP in our
real-world experiment (Fig 10, Tab. I). This result demonstrates
the importance of online adaptation for closing sim2real gaps,
especially for complex dynamical systems such as the dynamic
manipulation of deformable objects.

Online adaptation to system changes. In this experiment,
we stress test IRP’ robustness against unexpected system
changes during the interaction steps. We first ask the robot
to interact with the [base-rope-100]. After step 6, we tie four
knots on the rope and observe the system behavior. While
the tied knots significantly changes the rope’s length, density
and mass distribution, we observe that the system is able to
quickly adjust to the new system dynamics and regain good
performance (Fig. 9).

1
2
5

10
20
50

100
200

D
is

ta
nc

e
(c

m
)

long-cloth

Iteration 0 Iteration 1 Iteration 3 Iteration 5 Iteration 9

1
2
5

10
20
50

100
200

D
is

ta
nc

e
(c

m
)

bullwhip

Iteration 0 Iteration 9

base-rope-60

Iteration 0 Iteration 9

1
2
5

10
20
50

100
200

D
is

ta
nc

e
(c

m
)

thick-rope

Iteration 0 Iteration 9

base-rope-120

Iteration 0 Iteration 9

1
2
5

10
20
50

100
200

D
is

ta
nc

e
(c

m
)

elink-40

Iteration 0 Iteration 9

elink-60

Iteration 0 Iteration 9

0 2 4 6 8 9
Iterations

1
2
5

10
20
50

100
200

D
is

ta
nc

e
(c

m
)

base-rope-100

Iteration 0 Iteration 9

0 2 4 6 8 9
Iterations

knotted

Iteration 0 Iteration 9

IRP(Ours) IterLinear OptSim AVG

Fig. 10: Real-world test results on different ropes. Using the same network trained on simulation data only, our method is able to generalize
to significantly out-of-distribution ropes and a wide range of goals. First row: step 0,1,3,5 and 9 for long-cloth test case. Second row: step 0,
9 for other test cases. OptSim is not able to achieve low error, indicating the large sim2real gap in this task. All distances are shown in log
scale. iterLinear failed to find good solutions within 9 steps, since it uses online observations only and has limited model capacity. More
results can be find in the supplemental video.

VI. EXTENSION TO CLOTH MANIPULATION

To demonstrate the generality of IRP’s, we applied the same
method to a cloth placement task with minimal modifications.

Test cases. We randomly sampled five unseen cloth param-
eter pairs (size, density) as our testing cases. For each cloth
sample, we uniformly sampled 11 goal configurations from
the range illustrated in Fig. 4 A. Note that since test cloths all
have different sizes, the specific target keypoint locations are
adjusted accordingly.

Metrics. The performance is measured by the average
distance to the goal (in cm) over all keypoints. Note that
due to the stretching effects on the cloth and the thickness
of MuJoCo’s capsule model for collision, it is not possible to
reach zero error for a target configuration with perfectly square
and flat keypoint locations.

Result. Fig 4 B and C show the qualitative and quantitative

results respectively. Fig 4 B shows that IRP can adjust the
action to different landing locations and shape of the cloth
(e.g. to avoid folding). We compared with [DeltaReg] and
[IterHeuristic], two of the best performing baseline methods
from the rope whipping task. We modified the [IterHeuristic] to
increase all action parameters if the landing keypoints are closer
than the goal, and decreases otherwise, with the proportional
gain set to 0.5. On average, IRP achieves 3.5 cm error across
11 test goal configurations, yielding better performance and
lower variance comparing to other methods.

VII. CONCLUSION

This paper presents a general learning framework for goal-
conditioned dynamic manipulation: Iterative Residual Policy.
Our extensive experiments in both simulation and the real-
world demonstrate its adaptability to many aspects of the

system, including object parameters, real-world dynamics, and
even robot hardware embodiment. However, our method is not
without limitations, one of which is the assumption of action
repeatability, which can not be guaranteed in many applications.
We also assume full observability of the manipuland throughout
the trajectory, which makes direct application of this approach
difficult in highly cluttered scenarios. Future work could
explore using different visual feedback [14, 3] to deal with
non-repeatable action scenarios and perception techniques
leveraging temporal cues to handle partial observability [27].

ACKNOWLEDGEMENT

We would like to thank Zhenjia Xu, Huy Ha, Dale Mc-
Conachie, Naveen Kuppuswamy for their helpful feedback and
fruitful discussions. This work was supported by the Toyota
Research Institute, NSF CMMI-2037101 and NSF IIS-2132519.
We would like to thank Google for the UR5 robot hardware. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the sponsors.

REFERENCES

[1] D.A. Bristow, M. Tharayil, and A.G. Alleyne. A survey of
iterative learning control. IEEE Control Systems Magazine,
26(3):96–114, 2006. doi: 10.1109/MCS.2006.1636313. 2

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image
segmentation. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, editors, Computer Vision
– ECCV 2018, pages 833–851, Cham, 2018. Springer
International Publishing. 4

[3] Cheng Chi and Shuran Song. Garmentnets: Category-
level pose estimation for garments via canonical space
shape completion. In The IEEE International Conference
on Computer Vision (ICCV), 2021. 9

[4] Adrià Colomé and Carme Torras. Dimensionality re-
duction for dynamic movement primitives and appli-
cation to bimanual manipulation of clothes. IEEE
Transactions on Robotics, 34(3):602–615, 2018. doi:
10.1109/TRO.2018.2808924. 2

[5] Adrià Colomé, Antoni Planells, and Carme Torras. A
friction-model-based framework for reinforcement learn-
ing of robotic tasks in non-rigid environments. In
2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 5649–5654, 2015. doi: 10.
1109/ICRA.2015.7139990. 2

[6] Huy Ha and Shuran Song. Flingbot: The unreasonable
effectiveness of dynamic manipulation for cloth unfolding.
arXiv preprint arXiv:2105.03655, 2021. 1

[7] Julius Hietala, David Blanco-Mulero, Gokhan Alcan, and
Ville Kyrki. Closing the sim2real gap in dynamic cloth
manipulation. arXiv preprint arXiv:2109.04771, 2021. 2

[8] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya
Ganapathi, Ajay Tanwani, Nawid Jamali, Katsu Yamane,
Soshi Iba, and Ken Goldberg. VisuoSpatial Foresight for

Multi-Step, Multi-Task Fabric Manipulation. In Robotics:
Science and Systems (RSS), 2020. 2

[9] Rishabh Jangir, Guillem Alenyà, and Carme Torras.
Dynamic cloth manipulation with deep reinforcement
learning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4630–4636, 2020.
doi: 10.1109/ICRA40945.2020.9196659. 2

[10] Shiyu Jin, Diego Romeres, Arvind Ragunathan, Devesh K
Jha, and Masayoshi Tomizuka. Trajectory optimization
for manipulation of deformable objects: Assembly of belt
drive units. arXiv preprint arXiv:2106.00898, 2021. 2

[11] Kento Kawaharazuka, Toru Ogawa, Juntaro Tamura, and
Cota Nabeshima. Dynamic manipulation of flexible
objects with torque sequence using a deep neural net-
work. In 2019 International Conference on Robotics
and Automation (ICRA), pages 2139–2145, 2019. doi:
10.1109/ICRA.2019.8793513. 2

[12] Yinxiao Li, Yonghao Yue, Danfei Xu, Eitan Grinspun,
and Peter K. Allen. Folding deformable objects using
predictive simulation and trajectory optimization. In 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6000–6006, 2015. doi: 10.
1109/IROS.2015.7354231. 2

[13] Vincent Lim, Huang Huang, Lawrence Yunliang Chen,
Jonathan Wang, Jeffrey Ichnowski, Daniel Seita, Michael
Laskey, and Ken Goldberg. Planar robot casting with
real2sim2real self-supervised learning. arXiv preprint
arXiv:2111.04814, 2021. 2

[14] Xingyu Lin, Yufei Wang, Zixuan Huang, and David
Held. Learning visible connectivity dynamics for cloth
smoothing. In Conference on Robot Learning, 2021. 9

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In ICLR, 2019. 4

[16] Matthew T. Mason and Kevin Lynch. Dynamic manipu-
lation. In Proceedings of (IROS) IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 1,
pages 152 – 159, July 1993. 2

[17] Kevin L. Moore, M. Johnson, and Michael J. Grim-
ble. Iterative Learning Control for Deterministic Sys-
tems. Springer-Verlag, Berlin, Heidelberg, 1993. ISBN
0387197079. 2

[18] Moses C. Nah, Aleksei Krotov, Marta Russo, Dagmar
Sternad, and Neville Hogan. Dynamic primitives facilitate
manipulating a whip. In 2020 8th IEEE RAS/EMBS
International Conference for Biomedical Robotics and
Biomechatronics (BioRob), pages 685–691, 2020. doi:
10.1109/BioRob49111.2020.9224399. 2

[19] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola,
Pieter Abbeel, Jitendra Malik, and Sergey Levine. Com-
bining self-supervised learning and imitation for vision-
based rope manipulation. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
2146–2153, 2017. doi: 10.1109/ICRA.2017.7989247. 2

[20] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo,
Pulkit Agrawal, Dian Chen, Fred Shentu, Evan Shelhamer,
Jitendra Malik, Alexei A. Efros, and Trevor Darrell.

Zero-shot visual imitation. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2131–21313, 2018. doi:
10.1109/CVPRW.2018.00278. 2

[21] Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano.
Nonprehensile dynamic manipulation: A survey. IEEE
Robotics and Automation Letters, 3(3):1711–1718, 2018.
doi: 10.1109/LRA.2018.2801939. 2

[22] John Schulman, Jonathan Ho, Cameron Lee, and Pieter
Abbeel. Learning from Demonstrations Through the
Use of Non-rigid Registration, pages 339–354. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-
28872-7. doi: 10.1007/978-3-319-28872-7 20. URL
https://doi.org/10.1007/978-3-319-28872-7 20. 2

[23] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin
Coumans, Vikas Sindhwani, Ken Goldberg, and Andy
Zeng. Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 4568–4575, 2021. doi: 10.
1109/ICRA48506.2021.9561391. 2

[24] Priya Sundaresan, Jennifer Grannen, Brijen Thanan-
jeyan, Ashwin Balakrishna, Michael Laskey, Kevin Stone,
Joseph E. Gonzalez, and Ken Goldberg. Learning rope ma-
nipulation policies using dense object descriptors trained
on synthetic depth data. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 9411–
9418, 2020. doi: 10.1109/ICRA40945.2020.9197121. 2

[25] Kenta Tabata, Hiroaki Seki, Tokuo Tsuji, and Tatsuhiro
Hiramitsu. Casting manipulation of unknown string by
robot arm. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 668–674,
2021. doi: 10.1109/IROS51168.2021.9635837. 2

[26] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109. 4

[27] Zhenjia Xu, Zhanpeng He, Jiajun Wu, and Shuran Song.
Learning 3d dynamic scene representations for robot
manipulation. arXiv preprint arXiv:2011.01968, 2020.
9

[28] Yuji Yamakawa, Akio Namiki, and Masatoshi Ishikawa.
Motion planning for dynamic folding of a cloth with two
high-speed robot hands and two high-speed sliders. In
2011 IEEE International Conference on Robotics and
Automation, pages 5486–5491, 2011. doi: 10.1109/ICRA.
2011.5979606. 2

[29] Eiichi Yoshida, Ko Ayusawa, Ixchel G. Ramirez-Alpizar,
Kensuke Harada, Christian Duriez, and Abderrahmane
Kheddar. Simulation-based optimal motion planning for
deformable object. In 2015 IEEE International Workshop
on Advanced Robotics and its Social Impacts (ARSO),
pages 1–6, 2015. doi: 10.1109/ARSO.2015.7428219. 2

[30] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez,
and Thomas Funkhouser. Tossingbot: Learning to throw

arbitrary objects with residual physics. 2019. 2
[31] Harry Zhang, Jeffrey Ichnowski, Daniel Seita, Jonathan

Wang, Huang Huang, and Ken Goldberg. Robots of the
lost arc: Self-supervised learning to dynamically manipu-
late fixed-endpoint cables. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages
4560–4567. IEEE, 2021. 1

https://doi.org/10.1007/978-3-319-28872-7_20

	Introduction
	Related work
	Problem setup
	Approach
	Delta Dynamics Network
	Interactive Action Sampling and Selection
	Training Data Generation
	Real world system setup.

	Evaluation
	Rope Whipping Task
	Experimental Analysis

	Extension to Cloth Manipulation
	Conclusion

